Vectors Topics 🗳 😐 🎑 🧽

 Two ways to define a line: If given a point and direction If given two points (subtract points for direction) Ultimately, we just need to have a point and 1 direction and we can easily find the equation of a line in either vector or cartesian form 	Four ways to defini 3 poi Line 2 dist 2 par Ultimately, we just	e a plane: ints (not all on same line) and point not on line tinct intersecting lines rallel lines : need to have a point in a	plane and a perpendicu	ular direction			
	A Level Basics						
Column vector representation							
Finding the magnitude of vector							
Finding the position vector and direction vectors							
Finding vectors parallel to an axis or other vectors							
Basic angle calculations (includes between axes and within a triangle)							
Given magnitudes or angles, find unknowns							
x, y and z axis vectors							
Vector Equation Of A Straight Line $r = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + \lambda \begin{pmatrix} d \\ e \\ f \end{pmatrix}$ $\begin{pmatrix} a \\ b \\ e \end{pmatrix} = position, \begin{pmatrix} d \\ f \\ f \end{pmatrix} = direction (parallel to)$							
Given a point the line passes through and a parallel vector - find the vector equation of the line							
Given a point the line passes through and a line parallel to - find the vector equation of the line							
Given 2 points the line passes through - find the vector equation of the line.	equation						
3 Ways/Forms of writing a vector line equation	equation						
 Position plus lambda times direction Grouping the position and direction together 							
$r = egin{pmatrix} a+\lambda d\ b+\lambda e\ c+\lambda f \end{pmatrix}$							
3. Parametric $x = a + \lambda b$ $y = b + \lambda e$							
$z = c + \lambda f$							
Given a vector line equation, find another line equation (1) (1)), (0)						
Understanding what vectors parallel to an axis mean: Parallel to x axis $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, Parallel to y axis $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, Parallel to z axis $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$						
Showing a point lies on a line	(-)						
Showing a point does not lie on a line							
Given a point lies on a line, find one or more unknowns							
Finding position vectors or unknowns based on knowing distances (this often comes up with circ Collinear – showing points are collinear or pot collinear							
Given collinear and find unknown							
Cartesia	an Form Of A Straig $\frac{x-a}{d} = \frac{y-b}{e} = \frac{z-c}{f}$	ght Line					
Given a point the line passes through and a parallel vector - find the cartesian equation of the lin	ne						
Given a point the line passes through and a line parallel to - find the cartesian equation of the lin	ne						
Given 2 points the line passes through - find the cartesian equation of the line							
Converting from vector cartesian equation to cartesian line equation and vice versa							
Vector Equation Of A Plane $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + \lambda \begin{pmatrix} a \\ e \\ f \end{pmatrix} + \mu \begin{pmatrix} r \\ s \\ t \end{pmatrix}$							
$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = position, \begin{pmatrix} d \\ e \\ f \end{pmatrix}$ and $\begin{pmatrix} r \\ s \\ t \end{pmatrix} = directions$ (parallel to the plane) and are not parallel to each other							
Given a contained line and another point - find the vector equation of a plane (Hint: Generate 2	points from the line)						
3 Ways/Forms of writing a vector plane equation							
1. Position plus λ times direction plug μ times another direction							
2. Grouping the position and direction together							
$r = \begin{pmatrix} a + \lambda d + \mu r \\ b + \lambda e + \mu s \end{pmatrix}$							
$(c + \lambda f + \mu t)$							
$x = a + \lambda d + \mu r$ $y = b + \lambda e + \mu s$ $r = c + \lambda e + \mu s$							
Showing a point lies on a plane							
Showing a point does not lie on a plane							
Generating other points that lie on a plane or parallel vectors when given a vector plane equation							
Given a point lies on a plane, find one or more unknowns							
Showing 3 points are or are not coplanar							
Determining whether 4 points lie in the same plane							

Cartesian Equation Of A	Plane				
gx + hy + iz = d					
$d = distance$ form origin to plane, $\begin{pmatrix} g \\ h \end{pmatrix} = direction$ vector (p	perpendicular to th	e plane this time)			
(x_i)		. ,			
Note: we plug point into $\begin{pmatrix} y \end{pmatrix}$ to g	get d				
Given a point and perpendicular direction - find the cartesian equation of a plane					
Given 3 points - find the cartesian equation of a plane					
Given a line and a point not on a line - find the cartesian equation of a plane					
Given 2 parallel lines - find the cartesian equation of a plane					
Given 2 distinct intersecting lines - find the cartesian equation of a plane					
Showing a point lies on a plane					
Given a point lies on a plane find one or more unknowns					
Converting from vector plane equation to cartesian plane equation					
Converting from vector cartesian equation to vector plane equation					
Scalar Product	•				
Properties and formula		[[
Parallel and perpendicular implications					
Using the formula to find angles and areas					
Finding the exact value of $\cos \theta$					
Finding a perpendicular	vector				
To another given vector					
To two given vectors					
To a line and another line (including the coordinate of the foot of perpendicular)					
Intersections					
Point and a line (occurs at a point)					
2 lines (occurs at a point or not at all)					
2 planes (occurs as a line or not at all)					
Line and plane (occurs at a point, line or not at all)					
3 planes (occurs at a point, line or not at all)					
At a point					
At a line					
Not at all					
Plane with axes					
Angle Between					
2 vectors					
In a triangle					
2 lines					
Line and plane					
A line and its reflection					
Distance	1				
A point and a line					
A point and a line					
A point and a plane					
2 parallel planes					
A plane and a parallel line					
Reflections					
Point in a line					
Point in a plane					
Line in a plane					

Vectors Formulae Sheet				
Notations	$vector = a, \underline{a}, \overrightarrow{OA}$ distance= OA			
Vector Form	$a\mathbf{i} + b\mathbf{j} + c\mathbf{k} \equiv \begin{pmatrix} a \\ b \\ c \end{pmatrix}$			
Properties (addition/subtraction, multiplication and scalar product)	$\binom{a}{b}_{c} \pm \binom{d}{e}_{f} = \binom{a \pm d}{b \pm e}_{c \pm f} \text{ and } \lambda \binom{a}{b}_{c} = \binom{\lambda a}{\lambda b}_{\lambda c} \binom{a}{b}_{c} \cdot \binom{d}{e}_{f} = ad + be + cf$			
Magnitude of a vector Notation is	$\begin{vmatrix} a \\ b \\ c \end{vmatrix} = \sqrt{a^2 + b^2 + c^2}$			
Unit Vector	Unit vector of $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{\sqrt{a^2 + b^2 + c^2}} \begin{pmatrix} a \\ c \end{pmatrix}$			
Parallel and Perpendicular to	Parallel means vectors are a multiple of each other Perpendicular means scalar product equals zero			
Angle Between 2 vectors Always use the direction vectors	$\theta = \cos^{-1} \left(\frac{\begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} d \\ e \\ f \end{pmatrix}}{\left \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right \left \begin{pmatrix} d \\ e \\ f \end{pmatrix} \right } \right)$			
Vector Equation of a line To find this we need: Point and direction (if given 2 points find the directions and use either point)	$r = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + \lambda \begin{pmatrix} d \\ e \\ f \end{pmatrix}$ $\begin{pmatrix} a \\ b \end{pmatrix} = position, \begin{pmatrix} d \\ e \\ f \end{pmatrix} direction (parallel to)$			
Cartesian Equation of a line	$\frac{x-a}{d} = \frac{y-b}{e} = \frac{z-c}{f}$ $\binom{a}{b} = position, \binom{e}{f} direction (parallel to)$			
Parametric Form of a line	$x = a + \lambda d, y = b + \lambda e, z = c + \lambda f$			
Equation of a plane	$r.n = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. <i>n</i> where n is the normal vector			
Vector Equation of a plane To find this we need: a point in plane and perp direction. If not given perp direction take the cross product of 2 direction vectors. Remember to find a direction we subtract 2 position vectors	$\begin{pmatrix} z \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} + \lambda \begin{pmatrix} d \\ e \\ f \end{pmatrix} + \mu \begin{pmatrix} r \\ s \\ t \end{pmatrix}$ $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = position$ $\begin{pmatrix} d \\ e \\ f \end{pmatrix} and \begin{pmatrix} r \\ s \\ t \end{pmatrix} = directions (parallel to)$			
Cartesian Equation of a plane	ax + by + cz = d d = distance form origin to plane $\binom{a}{b} = direction \ vector \ (perpendicular \ to)$			
Scalar Product Note: θ is the angle between $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$	$ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} d \\ e \\ f \end{pmatrix} = \left \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right \left \begin{pmatrix} d \\ e \\ f \end{pmatrix} \right \cos\theta $			
Vector Product Note: θ is the angle between $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$	$\binom{a}{b}_{c} \times \binom{d}{e}_{f} = \binom{bf - ec}{-(af - cd)}_{ae - bd}$			
	$\binom{a}{b} \times \binom{d}{e} = \binom{a}{b} \cdot \binom{d}{e} \sin \theta$			
Area of a Parallelogram	$A = \begin{vmatrix} a \\ b \\ c \end{vmatrix} \times \begin{pmatrix} d \\ e \\ f \end{vmatrix}$ $A = \begin{vmatrix} a \\ b \\ c \end{vmatrix} \times \begin{pmatrix} d \\ e \\ f \end{vmatrix}$			
Pern Dictance between point and plane	$\binom{D}{c}$ and $\binom{C}{f}$ form 2 adjacent sides of a parallelogram			
from (α, β, γ) to $ax + by + cz = d$	$\frac{1}{\sqrt{a^2 + b^2 + c^2}}$			
Scalar Product Properties	$0.a = a \qquad a.b = b.a$ $(-a).b = -(a.b) \qquad (ka).b = k(a.b)$ $a.(b+c) = a.b + a.c$ If a and b are parallel: $a.b = a b $, moreover $a.a = a ^2$			
Cross Product Properties (optional)	$\mathbf{a} \times \mathbf{a} = 0 \qquad \mathbf{a} \times 0 = 0 \times \mathbf{a} = 0$ $\lambda(\mathbf{a} \times \mathbf{b}) = (\lambda \mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (\lambda \mathbf{b})$ $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$ $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$ $\mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$			